Directions: In the figure, $\overline{BE} \perp \overline{AC}$ and $\overline{BD} \perp \overline{BF}$. Complete the table.

m∠CBF	<i>m∠EBF</i>	m∠DBE	<i>m∠DBA</i>	<i>m∠DBC</i>
40°				
	70°			
		35°		
			G=0	
			65°	

Given: BE \perp AC, BD \perp BF. Find the value of x.

1)
$$m \angle 2 = 2x + 10$$
, $m \angle 3 = 40$. $x = \underline{\hspace{1cm}}$

2)
$$m \angle 3 = 2x + 5$$
, $m \angle 4 = 3x$. $x = \underline{\hspace{1cm}}$

3)
$$m \angle 1 = 2x$$
, $m \angle 2 = 2x + 10$,
 $m \angle 3 = 3x - 20$, $m \angle 4 = 3x - 10$.
 $x = 2x + 20$

4)
$$m \angle 1 = 3x + 1$$
, $m \angle 2 = 4x + 5$, $m \angle 3 = 2x + 13$
 $x = \underline{\hspace{1cm}}$

Complete the following proofs by supplying the missing statements and reasons.

5) Given: BA ⊥ AC; /1 is complem

 $\angle 1$ is complementary to $\angle 3$

Prove: $m\angle 2 = m\angle 3$

Name the definition, postulate, or theorem that justifies the statement about the diagram.

- 6) If *D* is the midpoint of \overline{BC} , then $\overline{BD} \cong \overline{DC}$.
- 7) If $\angle 1 \cong \angle 2$, then \overrightarrow{AD} is the bisector of $\angle BAC$.
- 8) $m \angle 3 + m \angle 4 = 180^{\circ}$.
- 9) If $\overline{BD} \cong \overline{DC}$, then *D* is the midpoint of \overline{BC} .
- 10) If *D* is the midpoint of \overline{BC} , then $BD = \frac{1}{2}BC$.
- 11) If \overrightarrow{AD} bisects $\angle BAC$, then $\angle 1 \cong \angle 2$.
- 12) $m\angle 1 + m\angle 2 = m\angle BAC$
- 13) BD + DC = BC

Y

Complete the proof by supplying the missing statements and reasons.

13. Given: $\overline{BA} \perp \overline{AC}$; $\angle 1$ is complementary to $\angle 3$.

Prove: $m \angle 2 = m \angle 3$

Statements

- 1. $\overline{BA} \perp \overline{AC}$
- 2. ∠1 and ∠2 are complementary.
- 3. $\angle 1$ and $\angle 3$ are complementary.
- 4. $m \angle 1 + m \angle 2 = 90$; $m \angle 1 + m \angle 3 = 90$
- 5. $m \angle 1 + m \angle 2 = m \angle 1 + m \angle 3$

 $m \angle 3$

- 5. _____
- 7. $m \angle 2 =$

Reasons

- 1. _____
- *L*. _____
- 3. _____
- 4. _____
- ,5. ____
- 6. Reflexive Prop.
- 7. _____

Write or name the definition or theorem that justifies the statement about the diagram above.

- 5. If $\overrightarrow{AE} \perp \overrightarrow{FC}$, then $\angle AFC \cong \angle EFC$.
- 6. If $\overrightarrow{FB} \perp \overrightarrow{FD}$, then $\angle BFD$ is a right angle.
- 7. If $\angle BFC$ and $\angle CFD$ are complementary, then $m\angle BFC + m\angle CFD = 90$.
- 8. If $m \angle AFB + m \angle EFB = 180$, then $\angle AFB$ and $\angle EFB$ are supplementary.
- 9. If $\angle BFD$ is a right angle, then $\overrightarrow{FB} \perp \overrightarrow{FD}$.
- 10. If $\angle EFC$ is a right angle, then $m\angle EFC = 90$.
- 11. If $\angle AFC \cong \angle CFE$, then \overrightarrow{CF} and \overrightarrow{AE} are perpendicular.

Special Angles and Perpendicular Lines Practice

Find the value of x.

12.

14.

15.

In the diagram, \overrightarrow{OC} bisects $\angle BOD$, $m \angle BOD = 90$, and $m \angle BOA = 40$. Find:

- **16.** *m*∠*BOC*
- 17. $m \angle FOG$
- 18. $m \angle AOH$
- **19.** *m*∠*HOE* **20.** *m*∠*DOE*
- **21.** *m*∠*AOE*

12. Complete the proof.

Given: \overrightarrow{AC} bisects $\angle BAD$;

 $\angle 1$ and $\angle 2$ are comps.;

 $\angle 3$ and $\angle 4$ are comps.

Prove: $m \angle 2 = m \angle 4$

- Statements
- 1. \overrightarrow{AC} bisects $\angle BAD$.
- $2. m \angle 1 = m \angle 3$
- 3. $\angle 1$ and $\angle 2$ are comps.; $\angle 3$ and $\angle 4$ are comps.
- $5. m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$
- 6. $m \angle 2 = m \angle 4$

- Reasons

- 4. Def. of comp. △
- 5. _____

Supply the statements or reasons needed to complete the proof.

12. Given: $\overrightarrow{CD} \perp \overrightarrow{AB}$;

 $\angle 1 \cong \angle 4$

Prove: $\angle 2 \cong \angle 3$

Proof:

Statements

Reasons

- 1. $\overrightarrow{CD} \perp \overrightarrow{AB}$
- 2. $\angle 1$ and $\angle 2$ are complementary; $\angle 3$ and $\angle 4$ are complementary.
- 3. _____
- 4. ∠2 ≅ ∠3

- 3. Given

Section 5.4, 5.5 Practice Problems

In the diagram, $\overrightarrow{OB} \perp \overrightarrow{OD}$, $\overrightarrow{OC} \perp \overrightarrow{OE}$, and $m \angle AOG = 15$. Complete.

12.
$$m \angle BOD =$$

Supply the missing reasons in the proof.

18. Given: $\angle 1 \cong \angle 3$

Prove: $\angle 1$ and $\angle 2$ are supplementary.

Proof:

Statements Reasons

1.
$$\angle 1 \cong \angle 3$$
, or $m \angle 1 = m \angle 3$

2.
$$m \angle 3 + m \angle 2 = 180$$

3.
$$m \angle 1 + m \angle 2 = 180$$

4. $\angle 1$ and $\angle 2$ are supplementary

- 1. _____
- 2. _____
- 3.
- 4. ___

Supply the missing reasons in the proof.

11. Given: $\angle 1 \cong \angle 3$ Prove: $\angle 1 \cong \angle 4$

Proof:

Statements	Reasons	
1. ∠1 ≅ ∠3	1	
2. ∠3 ≅ ∠4	2	
3. ∠1 ≅ ∠4	3	